
PCI Express Interface Development and
Simulation for High Speed Data Transmission

Vijitha.C.V1, Najla.A.P2, Jayaraj.U.Kidav3

1M.E Applied Electronics,
VCEW, Tamil Nadu, India

2Mtech Electronics Design Technology,

 NIELIT, Calicut, India

3Scientist, NIELIT, Calicut, India

Abstract - This paper discusses the development of PCI
Express Interface used for high speed data transfer to PC.
This serial bus lane-wise architecture with scalability has
many advantages over conventional parallel PCI bus. The
applications that require low speed can use only one lane of
PCI Express wherein applications that requires high speed can
use 2, 4, 8, 16 or 32 lanes of PCI Express depending on the
speed requirement. Each serial lane of PCI Express has data
transfer speed of 2.5 Giga bits per second and is duplex.
The interface uses Virtex-6 series of FPGA for implementing
the PCI Express.

Keywords: PCI Express, FPGA, Virtex-6

I INTRODUCTION
From the earliest digital computers, a means of inter-
process communication between the various components
that built a computing framework was as important as the
components themselves. Since those early days,
computers have come to transform the digital landscape
and in turn became a vital element in almost every
process. All this extra demand on computing power
necessitated the rapid development and production of faster
processors and co-processors. But as processor clock
frequencies and memory sizes get increased, the simple bus
inter-connecting all these blocks lagged behind to become
one of the weakest links in the computing chain. In order to
meet the demand of high-speed digital data processing and
achieve high-speed communication between digital front-
ends and pc, we implement a transmission system based on
PCI-Express protocol.
The first IO buses generation was introduced in the 1980s,
including the Industry Standard Architecture (ISA), which
enables a bandwidth of 16.7 Mbytes/s. Extended ISA
(EISA) and Video Electronics Standards Association
(VESA) are other buses of this generation. The second IO
buses generation was introduced in 1990s. In 1993 a 32-bit
PCI 33 MHz bus was released to deliver a bandwidth of
133 Mbytes/s and a 64-bit PCI bus that delivers a
bandwidth of 266 Mbytes/s [1]. However the increase in the
processor speeds and the bandwidth needs of newer IO
technologies, the PCI bus frequency was increased in
1995 from 33 to 66 MHz, to increase the bandwidth
from 133 Mbytes/s to 266 Mbytes/s for a 32-bit PCI, and
from 266 Mbytes/s to 533 Mbytes/s for a 64-bit PCI,

correspondingly [2]. Several limitations of the PCI 66 MHz
bus and the emerging of new high end system technologies
that continued demand for higher bandwidths led in 1999 to
the release of a new derivation of the PCI called the PCI-X
bus. The PCI-X bus has frequencies of 66 and 133 MHz
and enables a bandwidth up to 1 Gbytes/s. These
frequencies were increased to 266 and 533 MHz in 2002, to
increase the bandwidth provided up to 4 Gbytes/s [2].
Another bus system in the second generation is the
Accelerated Graphics Port (AGP). However, in order to
meet the higher bandwidth requirements and to satisfy the
bandwidth hungry devices, a new bus system was still
needed.
The latest generation IO bus system is the PCIe. It is
evolved from the PCI and overcame the limitations of it. An
x1 PCIe bus provides theoretically a bandwidth of 500
Mbytes/s, an x16 PCIe can provide up to 8 Gbytes/s, and a
x32 provides 16 Gbytes/s [2]. In this paper, the capabilities
of this PCIe bus system are demonstrated by designing and
simulating a PCIe based system. This system enables data
communication between the CPU through the Root
Complex and the Endpoint device. It also offers an
overview of the physical and transaction layers of PCI
Express and the benefits of PCI Express.

II PCI EXPRESS
PCI Express, the next-generation of the PCI bus, was
introduced to overcome the challenges of PCI. A PCI
Express topology contains a Bridge and many endpoints
(I/O devices) as shown in Figure 1. The switch replaces the
multi-drop bus and is used to provide fan-out for the I/O
bus. A PCI Express switch provides fan-out capability and
enables a series of connectors for add-in, high-performance
I/O. A switch provides peer-to-peer communication
between different endpoints and their traffic without
involving the host bridge provided processes do not involve
cache-coherent memory transfers.
The PCI Express bus implementation is similar to a point to
point network protocol utilizing dedicated lines, flow
control, error detection and re-transmissions. Despite this
fact it behaves and interacts with other components as its
old versions using a load-share flat-address space memory
architecture derived PCI addressing model.

Vijitha.C.V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2574-2577

www.ijcsit.com 2574

Fig 1 Switched Fabric Serial Interconnect Bus

III PCI EXPRESS ARCHITECTURE
PCIe has a layered architecture as shown in Figure 2. It
includes the Transaction Layer, the Data Link Layer and the
Physical Layer. On the top of these 3 layers the Software
Layer, or device core exists. Each of these layers is further
divided into two: transmitter and receiver. The transmitter
is responsible for processing the TLPs requested from the
device core before transmitting across the PCIe link. The
receiver processes the incoming TLPs before sending them
to the device core. To demonstrate the functionality of the
PCI Express protocol and for the purpose of this paper, 32-
bit addressable memory write/read and Completion with
Data (CPLD) TLPs will be considered.
The memory write TLP is considered to be a posted
transaction where the requester transmits a request TLP to
the completer. This in turn does not return a
completion TLP back to the requester, unlike the
memory read TLP, where the completer is supposed to
return a completion TLP back to the requester. The
completer returns either a CPLD, if it is able to provide the
requested data, or a Completion without data (CPL), if it
fails to obtain the requested data. Figure 2 also shows the
PCIe TLP. The device core sends to the Transaction Layer
the information required to assemble the TLP. This
information contains the header and the Data Payload, if
exists.
The main functionality of the Transaction Layer is the
generation of TLPs to be transmitted across the PCIe link
and the reception of TLPs received from the PCIe link. This
layer appends a 32-bit End to End Cyclic Redundancy
Check (ECRC) to the TLP. These 32 bits are stripped out
by the same layer at the receiver side. The Data Link Layer
(DLL) is responsible for ensuring a reliable data transport
on the PCIe link. The received TLP from the transaction
layer is concatenated with a 12-bit sequence ID and a 32-
bit Link CRC (LCRC) as shown in Figure 2 [4]. These
added bits are stripped out from the incoming TLP by the
same layer in the receiving device before being transferred
to the Transaction Layer.

 Transaction Layer

Data Link Layer

Physical Layer

Fig 2 Transaction Layer Packet

The physical layer of a PCIe device is responsible for
driving and receiving the Low Voltage Differential Signals
(LVDS) at a high speed rate of 2.5 Gbps each way. It
interfaces the device to the PCIe fabric. Such an interface is
scalable to deliver a higher bandwidth. The TLPs are
transferred to this layer for the purpose of transmission
across the link. This layer also receives the incoming TLPs
from the link and sends them to the Data Link Layer. This
layer appends 8-bit Start and End framing characters to
the packet before being transmitted. The physical layer
of the receiving device in-turn strips out these characters
after recognizing the starting and ending of the received
packet, and then forwards it to the Data Link Layer. In
addition to that, the physical layer of the transmitter issues
Physical Layer Packets (PLPs) which are terminated
at the physical layer of the receiver, such PLPs are
used during the Link Training and Initialization process.
In this process the link is automatically configured and
initialized for normal operation; no software is involved.
During this process the following features are defined:
link width, data rate of the link, polarity inversion, lane
reversal, bit/symbol lock per lane, and lane-to-lane deskew
(in case of multi-lane link) [2].

IV PCI EXPRESS ENDPOINT DESIGN

In this paper, the x1 PCIe Endpoint is considered. In Figure
1, the Endpoint is an intelligent device which acts as a
target for downstream TLPs from the CPU through the
Root Complex and as an initiator of upstream TLPs to the
CPU. This Endpoint generates or responds to Memory
Write/Read transactions. When the Endpoint acts as a
receiver, the CPU issues a store register command to a
memory mapped location in the Endpoint. This is done by
having the Root Complex generate a Memory Write
TLP with the required memory mapped address in the
Endpoint, the payload size (a DW in this design), byte
enables and other Header contents. This TLP moves

PCIe
switch

CPU
Root
Port

Memory

End
point

End
point

Dependent on design
configuration

Frame

Seq.
num

Header

Data

ECRC

LCRC

Frame

Vijitha.C.V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2574-2577

www.ijcsit.com 2575

downstream through the PCIe fabric to the Endpoint.
Routing of the TLP in this case is based on the address
within its Header. A termination of the transaction takes
place when the Endpoint receives the TLP and writes
the data to the targeted local register. To read this data
back, the CPU issues a load register command from the
same memory mapped location in the Endpoint. This is
done by having the Root Complex generate a Memory
Read TLP with the same memory mapped address and
other Header contents. This TLP moves downstream
through the PCIe fabric to the Endpoint. Again, routing
here is based on the same address within the Header.
Once the Endpoint receives this Memory Read TLP, it
generates a Completion with Data TLP (CPLD). The
Header of this CPLD TLP includes the ID number of the
Root Complex, which is used to route this TLP upstream
through the fabric to the Root Complex, which in-turn
updates the targeted CPU register and terminates the
transaction.

 EP DUT

Fig 3 Root Port Model and Top-level Endpoint

The other way around, is to have the Endpoint act as a bus
master and initiate a Memory Write TLP to write 1 DW to a
location within the system memory. This TLP is routed
upstream toward the Root Complex which in turn writes the
data to the targeted location in the system memory. If the
Endpoint wants to read the data it has written, it
generates a Memory Read TLP with the same address.
This is steered to the Root complex, which in-turn accesses
the system memory, gets the required data and generates a
Completion with this data TLP. This CPLD TLP is routed
downstream to the Endpoint through the PCIe fabric. The
Endpoint receives this TLP, updates its local register and
terminates the transaction. Figure 3 shows the layered
structure of the PCIe Endpoint device. There are two
different solutions for the physical layer (PHY). In the first
solution, this layer can be integrated with the other layers in
the same chip. Doing so increases the complexity of this
chip and provides a higher integration level. This integrated
solution has one key advantage when designing using an
FPGA. It uses a smaller number of IO pins, which enables
easier timing closure. An example of this integrated
solution is offered by Xilinx in their newly introduced
Xilinx Virtex-6 PCIe Endpoint block [5].

V RUNNING SIMULATION

The simulation can be run on multiple environments, i.e,
XILINX ISE, Mentor Graphics ModelSim, Synopsys VCS,
etc. For faster processing and better debugging the VCS
platform was the preferred choice of compiler and simulator
for this project.
The files needed to perform the simulation are listed in
board.f and xilinx_lib_vcs.f, both can be found in the
Functional directory under simulation. In case the
simulation is being run on VCS, the files listed in
xilinx_lib_vcs.f have to be copied from the Xilinx
installation directory and placed in the appropriate paths
that are being pointed-to from the file list.
Once the global variable files have been placed and the
project directory in its entirety is available on the target
systems, the simulation task can begin. The testbench file is
the board.v which is also located in the same directory as
the file lists. The test cases to stimulate and drive the
testbench and capture responses in located in the tests
folder under simulation. Various test cases can be
developed that utilize expectation task to check response
and the virtual program to generate and consume TLPs for
memory or configuration transactions.

VI RESULT

The various capabilities of the PCIe bus protocol were
demonstrated. The PCIe core was generated, configured
and customized using the Xilinx CORE generator. In a
modified version of a PCIe Testbench and with the help of
the simulation tool Synopsys VCS or ModelSim, the
functionality of the designed Endpoint was simulated and
verified. Several test cases were conducted to simulate the
functionality of this designed Endpoint device.

Output
Logs

Root Port
parsing

functions

RP_RX
Engine

RP_TX
Engine

Test
Program

 Root Port
Core

PCIe
Fabric

PCIe Core

T
L
P

T
X

T
L
P

R
X

Memory

TLP EP

Controller

TLP
App

Vijitha.C.V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2574-2577

www.ijcsit.com 2576

Fig 4 Simulation Result

VII CONCLUSION

The simulation results clearly show that packet
transmission between two devices on the bus is taking
place. This has helped form the basis of understanding the
core’s operation and the intricacies related to packet
generation transmission in particular. The Xilinx modules
have allowed the implementer of the design to gain a
quicker understanding of the device operation and the
method of interfacing successfully with the core.
The future potential of this IP Core is evident from the start
and was one of the intended purposes stated for this project
undertaking. As any future IP design involving a
microprocessor or micro-controller requires the utilization
of bus, the PCI Express IP Core form Xilinx provides
a standard industry ready bus that is easily portable to an
FPGA board, thus being practically invaluable. The
standard itself may undergo several more iterations before it
reaches a performance ceiling. This project has stated the
qualities and benefits of this bus and described the practical
usage of this core design.

REFERENCES
[1] Don Anderson and Tom Shanley, “PCI System

Architecture”, MINDSHARE INC., 1999.
[2] Don Anderson, Ravi Budruk, and Tom Shanley, “PCI Express

System Architecture, MINDSHARE INC., 2004.
[3] Ajay V. Bhatt “Creating a PCI Express Interconnect”,

Technology and Research Labs, Intel Corporation, 2002.
[4] “PCI Express Base Specification”, Revision 3.0, November 10, 2010
[5] “Virtex-6 Integrated Endpoint Block for PCI Express ”, User

Guide, UG517 (v5.1), September 21, 2010.
[6] Virtex-6 FPGA Integrated Block for PCI Express - User Guide -

Xilinx v14.3
[7] LogiCORE IP Virtex-6 FPGA Integrated Block v2.5 for PCI

Express, January 18, 2012.

Vijitha.C.V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2574-2577

www.ijcsit.com 2577

